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ON SUBMERGED JETS* 

M.A. GOL'DSHTIK and N.I. YAVORSKII 

A non-similarity, axisymmetric, and in general twisted, jet of incompressible 

fluid, flowing from a spherical source into a submerged space, is considered. 

It is shown that the solution of this problem is not expressible by a series 

of integral inverse powers of the spherical radius R, but has an essentially 

singular point at R= m. The principal terms of the asymptotic expansion 

are given by four integrals of conservation, namely, momentum, flow rate, 

and two components of angular momentum, and not by three. 

There is now a vast literature on the theory of laminar submerged jets, 

starting with the fundamental papers /l-3/, and including the special 

monographs /4, 5/. The interest stems from the fact that jet flows are a 

basic type of fluid and gas motion. 

Landau /2/ interpreted his exact solution of the Navier-Stokes 

equations as the viscous fluid flow produced by a point singularity (the 

end of a thin tube), communicating finite momentum to the fluid at zero 

flow rate. This is a similarity solution in the velocity field, inversely 

proportional to the distance R from the jet source. According to Rumer's 

hypothesis /3/, a non-similarity solution with a finite flow rate can be 

constructed as an expansion in integral powers of l/R with coefficients 

that depend on the spherical angle 8. This approach was used in all 

subsequent work, e.g., /6-lo/; the Navier-Stokes equations were solved in 

/lo/, and the boundary layer equations in /6-g/. It has been assumed 
that this expansion gives the asymptotic form of the solution remote from 

the actual jet source. Unfortunately, this assumption is incorrect. 

1. We consider the axisymmetric stationary flow of an incompressible viscous fluid, at 

rest at infinity, caused by a given velocity field on a sphere, radius &,centre the origin 

of a spherical coordinate system R,0, cp. The motion is described by the Navier-Stokes 

equations 
(vV) v = - p-‘Vp + vAv, div v = 0 (1.1) 

We shall show that this problem does not have a solution in the form of an expansion in 

integral powers of l/R. We will first take the case of an untwisted jet, when urp 3 0. 

Introducing the stream function $ by the relations 

i w 1 
VR=RIsinex’ 

a* w=- RsineaR 

and the independent variable 5 =COS8, we will seek the solution in accordance with /3/ as 

the expansions 

$=v&(z) +~a@) +O($) (1.3) 

VRZ_ vyl’ 
R - Jg +0(G), ve=- Rv& +o&) 

P _ +&?I(~) I +l?,(z) 
--R’ P RS +o(&) 

Substituting (1.3) into system (1.1) and equating coefficients of like powers of 1/R, 

we obtain a recurrent system of equations, the first of which for 1/r is autonomous but non- 

linear, while the rest are linear. The function y,(s) is Landau's solution /2/ 

(1.4) 

where A>1 is a constant, connected with the total flux of momentum through a sphere of 

arbitrary radius R 
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(1.5) 

by the relation 

J= 16~tp~~A 1 f k - -i_ 
[ 

A In Afi - A--i 1 WV 
As the parameter A increases from 1 to ce, J falls montonically from OQ to 0. For y,' 

we obtain the equation 

Ly;=cl, L=-$(i-x~)-&-2~~-1_6~ (1.7) 

The constant c,is connected with the fluid flow rate 0 through a spherical surface of any 
radius R 

Q=2npR2TuRsin6dB=-2np~vy,‘sinBd6= -2np[yz(1)-yz(-I)] w 
0 Cl 

by the relation 

Cl = - 
9(/P-i) Q 
2ry,(3.4a+ 1) 

The boundary conditions for (1.7) amount to requiring that yi be regular for x=*1. 
The non-trivial solution of the homogeneous Eq.(1.7) was found in /3/: 

y,,' = c,E6 (r), cg = const (1.9) 

Fe(z)= I- “:A”r_-;j f ii:--;; 

which corresponds to zero flow rate. For the existence of a solution with non-zero flow rate, 
the constant c1 must be orthogonal to the eiqenfunction of the operator, adjoint to L in (1.7). 
Multiplication of Eq.Cl.7) by (A -x)' leads to the selfadjoint equation 

&(I -s”)fA -x) z~+6(A2-If~i=~~(A-x)8 (1.10) 

the condition for the solvability of which consists in the orthogonality of (1.9) and the 
right-hand side of (1.10) 

This last equation is not satisfied for any A >I, i.e., (1.7) is not, in general, 
solvable in the class of regular &'(z). (Notice that (1.11) is satisfied for A = m (J =O), 
so that in this case expansion (1.3) is admissible.) 

The solution of (1.7), quoted in /3/, 

is not regular, since the integral with respect to E is logarithmically divergent at the 
point 5= -i, not to mention the fact that, as may be seen by analysing (1.9), Fe(z) has 
two zeros in the interval (-1,I). 

2. The fact that (1.71 is not solvable does not imply that the initial problem is 
unsolvable, but simply means that expansion (1.3) is unsuitable. Let us construct a more 
general expansion, assuming that the leading term v1 has, as in (1.31, the order 1/R, as 
required by the law of conservation of momentum (1.5). We can then write 

VGVlfW, w=o(R-1) @.f) 

If v1 satisfies Eqs.(l.l), we obtain for the vector W the system 

(WV) w + (vlv) w + (WV) vy = - p-‘Vq + YAW, divw=0 (2.2) 

In jet theory we are interested in the asymptotic behaviour of the solution as R--tee. 
In this domain, by (2.11, the first term in (2.2) is a small quantity of higher order, SO 
that w satisfies, to a first approximation, a linear equation, which we shall in fact first 
consider for the case without rotation, when up = 0. The vector v,is then Landau's solution. 
The solution of the linearized homogeneous system (2.2) will be sought as an expansion in 
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eigenfunctions which satisfy (1.2) : 

II, = v j2 Y, (4 R2-an> 
m 

WR = - v nz2 Y,’ (J) xan (2.3) 

m m 

~s=-~r(2--a,,)y,(l)R~“, $=ve&(+)Ran-’ 
n--l n-=2 

Substitution of (2.3) in (2.2) leads to the equations 

[(i - rfl)y,“]’ - 2 z VI: + [an (a, - 5) + 

2(~,+1)~]~d--(~,--)[~-~]~n- 

(2.4) 

(%+I)&=0 
g*’ + %!/nD - (a,, - 2) j-j& Y,’ + 

4s -- 
A-X 

2a AZ:% 
n(A -an@*-3)]&]=0 

Regular solutions of system (2.4) are only possible for certain values of a,, connected 

with the eigenvalues of the operator of the system, which is a generalized Legendre operator. 

While such operators have good spectral properties /ll/, the well-known spectral theorems 

cannot be used directly as applied to (2.4), because the parameter a, appears essentially 

non-linearly in (2.4). We shall therefore confine ourselves to qualitative considerations 

and a numerical analysis. As a preliminary, we observe that the case n= 2 plays an isolated 

role, since a?= 2 for all A. This is connected with the law of conservation of flow rate 

(1.8), from which it follows at once that a term -l/Ra must be contained in expansion (2.3) 

for we. Formally, a,= 1 is also an eigenvalue for all A; but it is superfluous, inasmuch as, 

by condition (2.1), the vector w must not contain terms -l/R, as is reflected in the form 

of expansions (2.3). 

In the case of zero Reynolds number Re = (Jin)‘l+v, when A = 00, system (2.4) reduces to 

the equation 

[(1--YY,"l" + [(a,- ~)(%---)+%l(% + 111 Y,"-1 

a, (a,* -- 1) (a,, - 2) AZ = 0 

(2.5) 

If the regular solution of (2.5) is sought as a polynomial of degree n+ 1, an algebraic 

equation of the fourth degree is obtained for a,,, with the solutions a, =n;n + 2,--n + 1,-n - 
1. The condition of rest at infinity is obtained only when all the a,,> 0 in expansions 

(2.3), so that the last two roots must be discarded; but the first two branches of eigenvalues 

are left. In the special case when Re = 0 these branches are superimposed, so that we can 

regard (2.5) as having an integer-valued double "spectrum" a, = n, while to each a,, there 

correspond two regular eigenfunctions 

yE'=(1 - "2)Pn_1, yE'= (I- 22)Qn_9, n > 3 (2.6) 

where P,(r) and &(z) are polynomials of degree n. 

Notice that, by (2.5), y,,-(l-.9) for n>3, as is reflected in representation (2.6). 

With a,=2, Eq.(2.5) together with the solution ~(1-9) , has the eigenfunction yp= 3, which 

is regular but does not satisfy the conditions yR(+l) = 0, and thus, by (1.8), ensures that 

the flow rate Q is non-zero. Notice that this does not contradict the condition of axial 

symmetry w,(R, +I) = 0, since the functions yo are not contained in expansion (2.3) for vO. 

inasmuch as cr,= 2. 
The general solution of (2.5) contains two arbitrary constants 

Y,,= Any:' + &Y!?' (2.7) 

In our case Re --) 0,, problem (2.2) remains linear, not only as R + M, but also for any 

R. The presence of the two infinite sequences (A,,},{/?,,} means that in this case any two 

boundary conditions on the sphere R =R, can be satisfied; for instance, va (R,, I) and 

G (R,, 2) can be arbitrarily specified from the space of continuous functions C([-1,ll). This 
is possible by virtue of the well-known completeness of the set of polynomials in the space 

c (l-1, 11). Notice that the unusual situation involving the presence in the problem of two 

complete sets of eigenfunctions (2.6), which are linearly dependent, in fact ensures that 

two conditions can be satisfied. 

As Re increases from zero, the branches a,(Re) split up. while cc,, themselves become 

non-integral for n > 3 (but a:! = 2). This is clear from Fig.1, where we show as continuous 

curves the results of a numerical solution of Eqs.(2.4) (curves of n,(Re) for n = 3,4,5 1. 
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Fig.1 

In essence, the splitting of the set of eigenvalues into 
two branches should not in principle change the situation: 
to each branch there must correspond a complete set of 
eigenfunctions (which are no longer polynomials). While 
this is easily seen physically, a strict proof of these 
properties encounters serious difficulties and has not yet 
been given. 

3. By what has been said, for all Reynolds numbers 
the linearized equation (2.21 has a double spectral point, 
corresponding to n = 2 in expansions (2.3). In this case, 
by the general thoery, the system of basis functions must 
be augmented by associated eigenfunctions in order to be 
complete. An associated eigenfunction is a solution 

It was shown in /12/ that a logarithmic resonance term must be introduced. The difference 
lies in the fact that here it must be present for all, and not just some, Reynolds numbers. 
Notice that the logarithmic term in the expression for us is obtained at once from the 
equation of continuity in (1.11, if a term ml/R' is admitted in expansion (1.3) for ve. 

Substituting (3.1) into (2.2) and integrating, we obtain the equations 

Lu’ = D = eonst, h = --2u -+ D/3 (3.2) 

L&3’ - 62’ == 3g - h - y,‘u’ + y,*u + u’ + 2y&(l - 9) (3.3) 

The operator L is given by (1.7), and yl(x) by (1.4). 
Eq.(3.2), like (1.71, has a regular solution only if D =O. We then have 

I-AX 
u(5)=B(i-ry A(A__.)r , u’=BFo(4 (34 

where F,,(s) is given by (1.9). From (3.3), after integrating the second equation in the light 
of (1.4) and (3.41, we obtain the inhomogeneous equation 

Lz' = f(s) (3.5) 

f(z)=C+B [6- /$--I, + 31(aAI-,;) - “$-@;l;’ + “;$cs;j ] 

As in the case of problem (l-7), homogeneous Eq.(3.5) has the non-trivial solution (1.91, 
but now the right-hand side of (3.5) is such that, by a suitable choice of the canstants B 

and C, we can ensure that the inhomogeneous problem is solvable. The second condition, 
connecting B and C, consists in specifying the flow rate Q. 

multiplying (3.5) by (d -z)*, we obtain 

I(1 - ze) (A - I) z+ + 6 {d’ - 1) z’ = (d - z))” f (2) (3.6) 

Integration of (3.6) with respect to s from -1 to i gives the flow rate 

Q=- 2np 
3(R---1) 

{C[Az++) + ~[9Az-5+~A(.~~-~)ln~~} (3.7) 

From the condition for the selfadjoint ~q.(3,6) to be solvable: 

we obtain 

C[-4A~+$+2~1+4 + (3.8) 

The determinant of system (3.7) and (3.8) is non-zero for all A >a, so that the constants 
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3 and C are uniquely defined. Thus the general solution of Eq.(3.6) is 

2' (5) = COP, (5) + F (z), cg = const (3.9) 

where 8'(z) isaregular particular solution of Eq.(3.6). 
By using the method of varying the arbitrary constants, this solution can be written in 

quadratures 

Here, 

From (l.g), 

Fs, (2) = - (I - sl} (t - .Q) (z - 5s) (A -x)+ 

This expression is regular in the closed interval I-i,il. Its form is due to additive 
isolation of the singularity, connected with inversion of the degenerate operator L. 

4. Let us now consider the problem for any R and Re, when the non-linearity of Eq.(2.2) 
has to be taken into account. In the non-linear case, expansions (2.3), augmented by associated 
functions (3.1), are not a solution of (2.2), since, when (2.3) is substituted into (2.2), 
the non-linearity generates uncompensated terms with total degrees IIR. Hence expansion 
(2.3) is not closed. 

When expanded in integral powers of l/l?, the linear and non-linear terms in (2.2) will 
also be expressed in terms of certain integral powers, i.e., the integral powers have the 
group property. For the expansion to be closed, the family of non-integral powexs must also 
have this property, so that the linear and non-linear terms give powers of this family. In 

view of these considerations, the closed expansion must be written in the form 

where nj are non-negative integers, chosen in such a way that P,, 6 ~~~1. The functions z&,(x) 
satisfy linear inhomogeneous equations, which are obtained due to the non-linearity &f (2.2). 
If, for instance, (3.1) is substituted into (2.2), the convective terms will generate inhomo- 
geneous linear equations for the functions up. uldr and uag, i.e., inhomogeneous equations only 
make an appearance for terms of fairly high order. 

Notice that (4.1) contains entirely as a subsequence the expansion (2.3)‘ whose terms 
satisfy homogeneous equations; this would not happen if the a,, were integers. The expansion, 
which plays an interesting role in (4.1), may naturally be called, by analogy with the case 
of Laplace's equation, a generalized multipole expansion, which contains a double denumerable 
set of arbitrary constants A,, and B,, which have to be found from the boundary conditions at 
R=R,. Each multipole generates an entire sequence of terms of the expansion (4.1), while 
this sequence vanishes if there is no multipole. In particular, the dipole term generates 
in (4.1) a sequence of integral powers of 1/R. 

In short, the solution of our problem is a subset of a complete set of multipoles with 
the multipole sequences generated by them. In the double sum of (4.1) there only appears one 
arbitrary constant B, defined by Eqs.(3.7), f3.8), and proprotional to the flow rate Q. Hence 
the double sum may be termed a sequence whose characteristic feature is the presence of 
logarithmic terms. 

With the aid of the above results, we can write explicitly the principal terms of the 
asymptotic expansion of the solution for large R. Up to terms of o (RmZ), we have 
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(4.2) 

The functions afl, u, and z'are given by (1.4), (3.4), and (3.9). They contain three 
arbitrary constants A,B. and c6 (since c, and c, are arbitrary, the function E/** =czPB can 
be regarded as included in zt), which, in accordance with the usual methods of jet theory, 
have to be found in terms of the given integrals of conservation. 

In all previous work, the two integrals of conservation (1.5) and (1.8) have been 
specified, i.e., the momentum J and flow rate Q; we pointed out above that these determine 
the constants A and 8. But there is another exact integral of conservation for the Navier- 
Stokes equations, which may be specified independently of J and Q, and hence defines the 
constant cO. This is the flux of the x-component of the angular momentum through the 
surface made up of a hemisphere of radius R and a ring in the y= 0 plane between circles of 
radii R and & (see upper right of Fig.1). 

If the integration were performed over the complete sphere, then L,= 0 in the axisymmetric 
case. This is why the integral of conservation (4.3) has remained unnoticed in the literature. 

In short, to describe jet non-similarity flow by means of the principal terms of asymptotic 

(4.3) 

expansion (4.2), three integrals of conservation: J,Q, and L,,have to be specified, and not 
just two. 

This conclusion relates to the solution of the complete Navier-Stokes equations. Mean- 
while, most work on jet theory uses the boundary-layer approximation. We shall first consider 
what happens with the exact solution in the situation when Re-m, A-1, so that, by (1.5)‘ 
J-w. The final result depends largely on how the flow rate Q varies on this passage to the 
limit, which in turn depends on the way in which Re increases. If the jet issues from a tube 
of radius a with characteristic fluid velocity v,,, then /-~#a~, while Q - u,oz, so that Q- 

a ff- a (A - i)-” and everyhing depends on the law of variation of Q (A). In particular, with 
a=idem, i.e., a fixed tube geometry, the product Q(A*- 1)-O, so that system f3.7)-(3.8) 
reduces to the equations C+3B=O and C +5B=O, which have the solution C=B=O. Then, by 
(3.4)) UEO, and the logarithmic terms in expansion (4.1) fall out. In this situation the 
expansion (1.3) is not contradictory , and for the asymptotic description of the non-similarity 
jet up to terms of order i/R*, it suffices to specify only the two integrals of conservation 
J and L,, while Q can be arbitrary. 

Now consider the boundary-layer approximation. 1n cylindrical coordinates (r,cp,z) the 
boundary layer equations for an untwisted axisymmetric jet are 

U-g+Y i au -$=v !&fTar ( -1 
g+ ~=o, v=(u,0,22) 

Following /6/, we introduce the variable q = ri(z-8') and write the stream function 9(&z) 
as the expansion 

The function a(q) was obtainedbyschlichting /l/ 

where J is the jet momentum. Substituting (4.6) into (4.4) and repeating 
Sect.2, we arrive at the linear spectral problem 

%I ( > *+a a*’ ’ 
T- +-T-T- ) t_(f 

-I’- 

(4.6) 

(4.7) 

the arguments of 

(4.8) 
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Notice that f10 = 2 is an eigenvalue. The corresponding eigenfunction n,(q) was obtained 
by Loitsyanskii /6/. Following /6/, we introduce the variable E = a!4; then 14.8) becomes 

E(1 --%+a," -1. (1 - 4:) (1 -E)a,P ; (4.Y) 
28, (1 - E) a,’ -i- 4 (fin - 2) a, = 0 

a,(O)=O; an/dL- E-0, E--+1 
By comparison with (2.41, Eq.(4.9) has unusual spectral properties. First, given any &,, 

there is a solution which is bounded at tf = 0; 1, 

so that there is a continuous spectrum. Moreover, for certain values of &,,there are solutions 
in the form of polynomials S,(g) of degree n. The spectral values fin satisfy the relation 

(n - 2) [n (n + 3) - 2 (fin - 2)l = 0 (4.12) 

whence it is clear that, apart from n = 2, which corresponds to solution (4.11), there is a 
discrete integer-valued spectrum 

fin = n (n -+- 3)/2 + 2, fro = 2, fix = 4, & = 7, fJ3 = 11, . . . (4.13) 

which generates second non-trivial solutions of Eq.(4.9), bounded in an interval; these solutions 
in combination with solutions (4.111, in general enable conditions (4.10) to be satisfied. 
However, with p,,=4; 7, these solutions are the same as (4.11) and we must use non-analytic 
solutions, having the form, in the neighbourhood of 5 = 1, 

a,(5) = A, + B, (i - E) In (1 - 8 + . . . (4.N) 

which likewise satisfy conditions (4.101. Thus, the spectrum of problem (4.9)-(4.10) is 
(4.13). The eigenfunctions corresponding to this spectrum form a system of multipoles of the 
boundary layer equations. As above, the multipoles generate multipole sequences, whose terms 
satisfy linear inhomogeneous equations. 

Comparing fin and G (the continuous curves of Fig.l), we see that the boundary layer 
approximation does not hold, starting with &>2. Loitsyanskii's solution &, = 2 is the 
unique higher term of the expansion which is the same as the solution of the Navier-Stokes 
equations as Re-t 00 and for large z. All the higher approximations so far obtained in jet 
theory (up to the ninth) are terms of the same, namely, dipole sequence. Such approximations 
are clearly incorrect. This links up, in particular, with the paradoxical fact that the 
second approximation is in better agreement with experiment than is the third 19, 13/. 

5. Consider a non-similarity twisted jet. The solution for the rotational velocity Vrp 

will be sought as 

The first two terms in (5.1) correspond to the well-known solutions /lo, 14/, in which 
the integral powers are dictated by the laws of conservation of the z-component of the 
momentum /14/ and the z-component of the angular momentum /lo/, A typical feature of the 
first term is the unboundedness of vm for ==-I, due to the impossibility of satisfying 
simultaneously the conditions r1 (*1) =o. This solution corresponds to the jet flow from a 
rapidly rotating tube, and in the limit, to a vertex thread. The solution for Y,(I), which 
has minimal singularity, is regular for z= 1, and when rotation is present, is non-analytic: 

111'(x) - In (1 -+ 2). 
It is clear physically, however, that actual axisymmetric sources contain a semi-axis 

z- -1 inside the conducting tube, i.e., outside the domain of flow, so that non-analyticity 
at x=--2 is admissible; indeed, it was shown in /14, 15/ that it is precisely such solutions, 
characterized by a specified momentum of rotation, which correspond to actual sources of 
twisted jets, which cannot therefore be point sources. If we turn to a somewhat idealized 
statement of the problem with a given distribution of the velocity vector on a sphere of radius 
R,, we find that, for the solution to be regular at Z= -1, we have to put TI(t)~OO, with the 
result that Loitsyanskii's statement /6/ is obtained, in which the first term of the expansion 
is the dipole term, characterized by specifying the z-component of the flux of the angular 
momentum 

?I 

L,= -22npR3 S[ ( au, Vv "sVrp-V m-3 
>I 

sin Ode 
0 

If (5.1) is substituted into the Navier-Stokes equation (1.11, and Landau's solution is 
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used for ~a and va, we arrive, as above, at a system of homogeneous linear equations, 
defining the eigenfunctions 

(1 -zs)r+bllrn'+ (y-- ~J(Y,-- Y~~JJ,=O (5.2) 

Here, gi(z)is preserved in the form (1.4). The remaining equations will be inhomogeneous, 
which generates in (5.1) its own system of multiple sequences, which are not written down 
explicitly. 

The eigenvalue ra=2. For n>2 the y,, are fractional and depend on the Reynolds 
number (the broken curves in Fig.1). With Re-t 0 (~4 + m) ys = n, I',(z) = M,, (1 - 2) T,_,(z) 
(n> 2),. where T,,(z) are polynomials of degree n, and &f, = con& The operator of Eq.(5.2) is 
a generalized Legendre operator, while the system of eigenfunctions r,(x) is complete in 
&((-i,l)), so that um(RO,x) can be any function of L,. It must be said that, according to 
our computations, there are no eigenvalues ?(n in the interval (1.2), so that the dipole term 
n=2 is in fact the principal one in expansion (5.1), when rr (r) ms 0. 

Our solutions enable twisted jets with near-axial return currents to be described. Let 
the jet rotation be specified by the z-component ti of the angular momentum. Then, using 
our integral (4.3) of conservation of L,, we obtain the relation 

Lx - a (Re) L,’ = b (Re) cg (5.3) 

in which we use the solutions (4.2); the constant c,, is given in (3.9), while the velocity 
vm is found in /lo/. Simple analytic working gives L,>O, a (Re)>O, and b(Re)>O. It is 
clear with the aid of (5.3) that, given the Reynolds number Re, by increasing the rotation, 
i.e., Lr, we can obtain negative values of cg as large as desired in absolute value. Then, 
by (4.2)) for certain values of the spherical radius R, zones with va<O arise. However, 
as Re-03, the quantities a-R%+, b- Re. Hence it follows that, in the approximation of 
boundary layer theory (a=O), no return currents appear. 

To sum up, the solution of the problem of a twisted jet, flowing from a "spherical 
source", is defined up to three denumerable sets of arbitrary constants {B,}, {C,,}, and (M,,}, 
which enable any condition to be satisfied on the velocity 
radius I&. The principal terms of the asymptotic expansion 
integrals of conservation: J,Q,L,,L,. 

vector, specified on a sphere of 
are then determined by the four 

1. 
2. 

3. 
4. 

5. 

6. 

I. 

8. 

9. 

The author thank V.N. Shtern for useful discussions. 
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